SYSTEMANALYSE emobpy: An open tool for creating L)

emobpy is an open-source, python-based tool that flexibly generates
battery-electric vehicle profiles based on mobility statistics, physical
properties of vehicles, and customizable assumptions [1]. A profile
comprises four hourly time series: a vehicle’s mobility, driving electricity
consumption, grid availability, and, optionally, grid electricity demand.

emobpy can be flexibly adjusted to accommodate different countries' data
availability and researchers’ assumptions on mobility behavior. Code and
input data are provided open-source [2]. For an illustration, we create and
characterize 200 battery-electric vehicle profiles for Germany using current
BEV models. These profiles are also provided in a public repository [3].

Single battery electric vehicle time-series: Volkswagen 1D.3, 45 kWh battery, 93 kW motor

battery-electric vehicle time-series from empirical data
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Time-series input data and creation steps

First step

* Type of driver

* Amount of trips per day

* Distance and duration per trip

* Departure time and destination per trip
* Time step size

* Min/Max time at location
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(i) Vehicle mobility
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https://gitlab.com/diw-evu/emobpy/emobpy
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(iv) Grid electricity demand

Single trip simulations: Based on driving cycles and thermal comfort temperature
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