

Modellexperimente - Entwicklungspfade für neue Ensayer Stromanwendungen und deren Auswirkungen auf kritische Versorgungssituationen

aufgrund eines Beschlusses des Deutschen Bundestages

Projektvorhaben

Ergebnisvergleich unterschiedlicher Modellansätze zum Markthochlauf neuer Stromanwendungen und deren Auswirkungen auf die Versorgungssicherheit

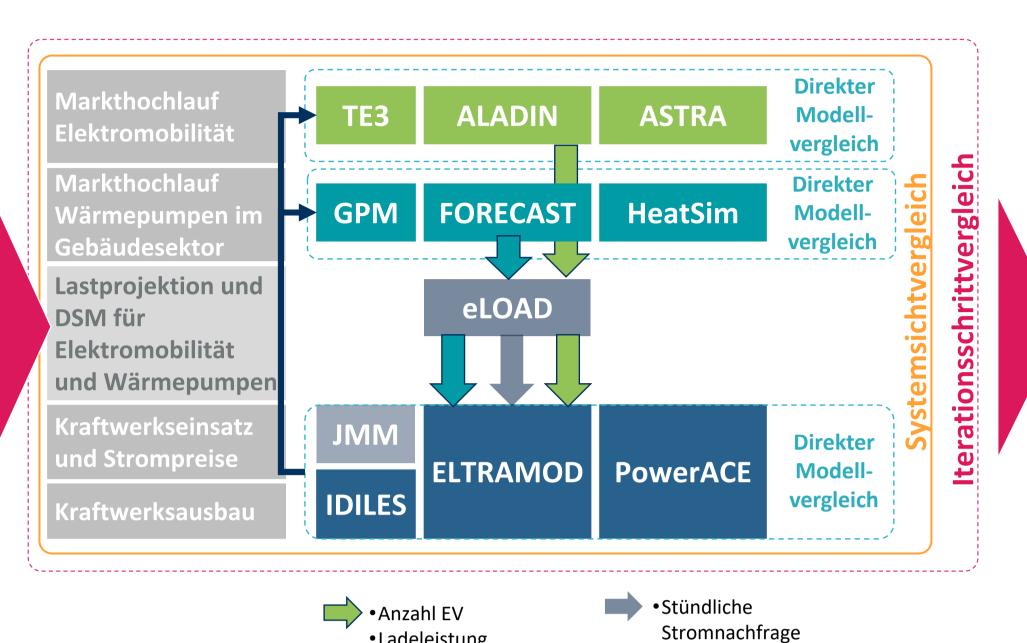
- Fokus auf Elektromobilität (EMob) u. Wärmepumpen (WP) in Wohngebäuden
- Anwendung verschieden detaillierter Modelle mit spezifischem Analysefokus (Verkehrs-, Wärme-, Stromsektor) und harmonisierten Eingangsdaten

Wie wirken sich neue Stromanwendungen auf die Versorgungssicherheit aus?

- Modellkopplung: Spezifische Modelle zur Nachfrageentwicklung werden mit Elektrizitätsmarktmodellen zu einem Energie-Modell-System (EMS) gekoppelt
- Aus den nachfrageseitigen Modellen werden zukünftig erwartete Lastgänge für die Stromanwendungen EMob sowie WP abgeleitet und als Input für die Elektrizitätsmarktmodelle verwendet
- Analyse der zukünftigen Erzeugungssicherheit in kritischen Versorgungssituationen (Analyse der Angemessenheit der Erzeugung für die Bewältigung von Perioden mit hoher Residuallast)

Übersicht zum dreistufigen Modellvergleich und zur Modellkopplung

Direkter Modellvergleich

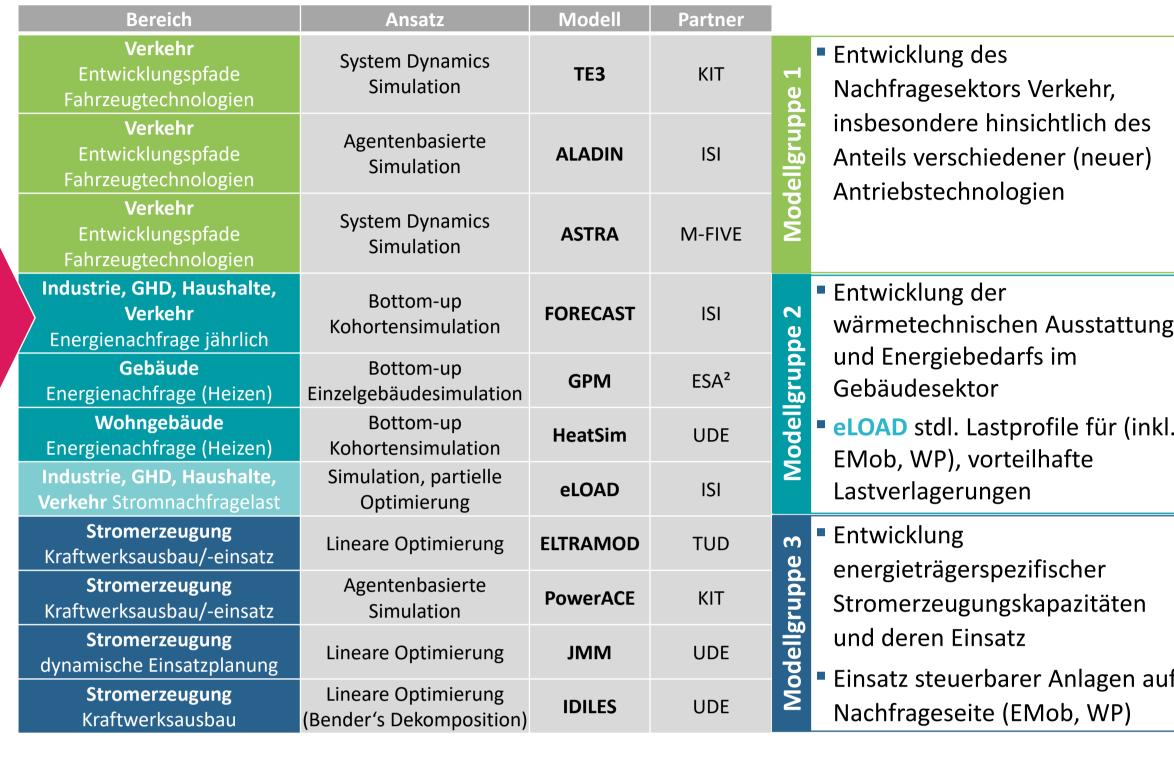

Vergleich der Modellergebnisse innerhalb der selben Modellgruppe ohne Austausch von Informationen zwischen den Modellgruppen

Systemsichtvergleich

Vergleich der Ergebnisse innerhalb der selben Modellgruppe nach einmaligem Austausch von Informationen zwischen den Modellgruppen

Iterationsschrittvergleich

Vergleich der Modellergebnisse innerhalb der selben Modellgruppe nach unterschiedlicher Anzahl an Iterationsschritten



Stündliche Prozesslast

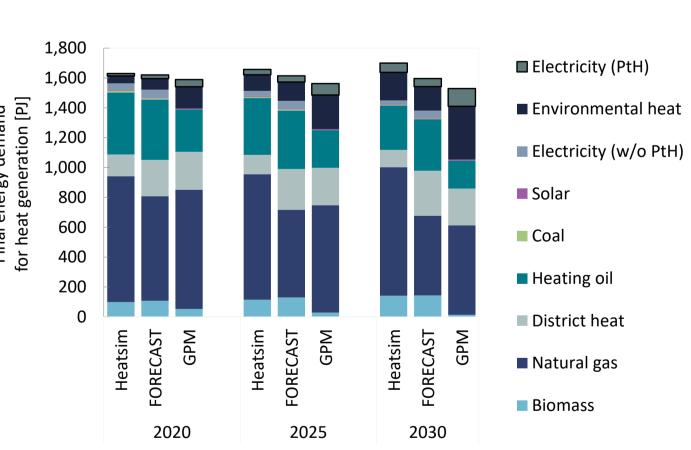
EMob u. WP

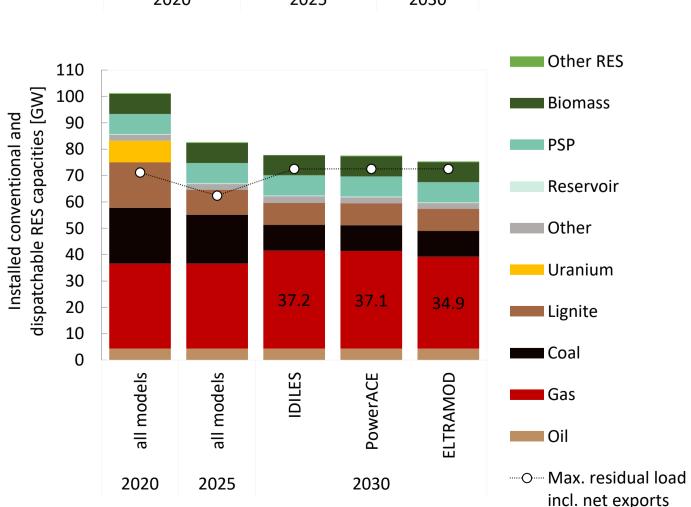
Strompreise

Innerhalb von MODEX-EnSAVes kooperieren 6 Projektpartner mit 11 Modellen

Direkter Modellvergleich

MG1 – Verkehrsmodelle

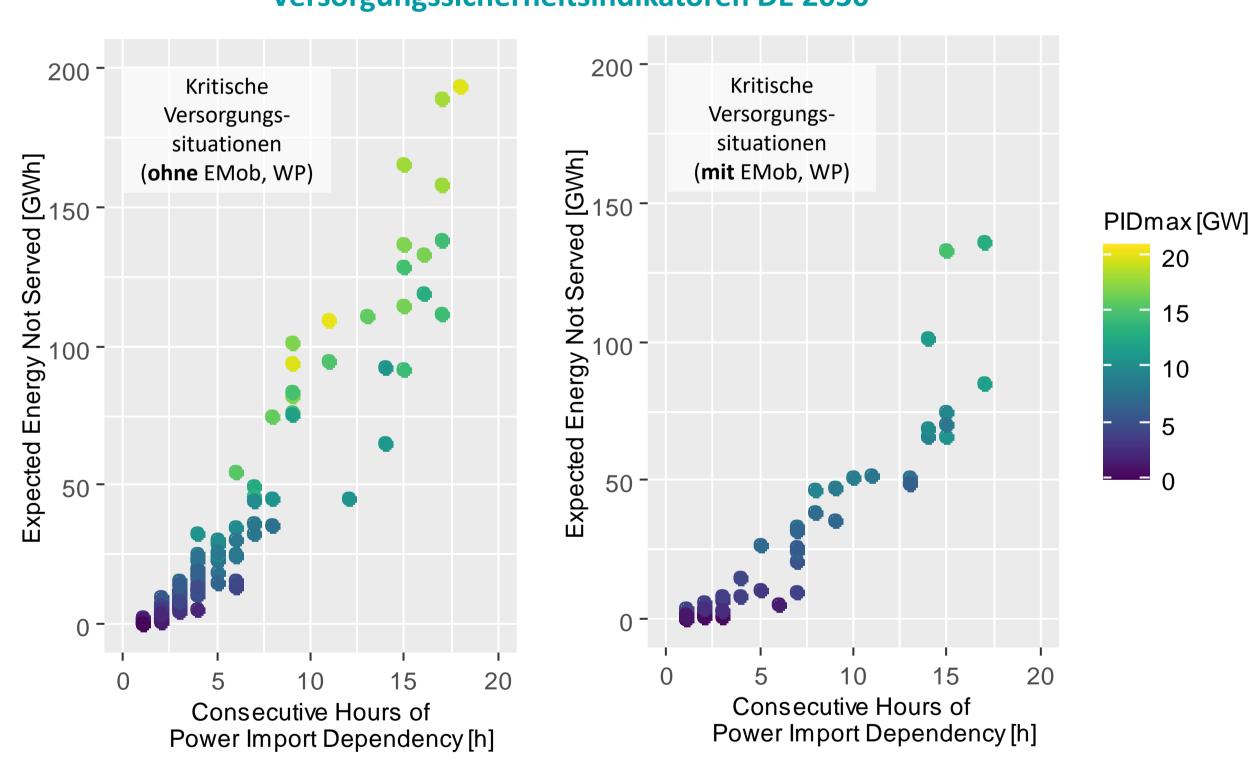

- Alternative Antriebe ersetzen Dieselfahrzeuge (Hälfte der Neuzulassungen in 2030)
- Große Anteile von Elektrofahrzeugen in den Verkäufen (30-50% in 2030) führen zu Rückgang der Gesamtenergienachfrage (20-25%)
- Ursachen für Ergebnisunterschiede:
 - Modellierung des Nutzerverhaltens unterschiedlich, großer Einfluss auf Kaufentscheidung


MG2 – Gebäudepark-/Wärmemarktmodelle

- Ursachen für Ergebnisunterschiede:
 - Aggregationsniveau der Eingangsdaten (Gebäude- u. Heizungsbestand, Anzahl der Agenten GPM)
 - Modellierungslogik der Investitionsentscheidungen (Agenten mit multiplen Präferenzen vs. uniformer Investor mit kostenbasierten Präferenzen)
- Logik für die Substitution von Technologien (technische vs. ökon. Nutzungsdauer; Sanierungssynergien)
- **Detailgrad** Diffusionsrestriktionen (z.B. Potenziale,
- Verfügbarkeit)

MG3 – Strommarktmodelle

- Spätestens ab 2030 Investitionen in zusätzliche GuD-KW
- Durch die Berücksichtigung von Regelleistung investieren IDILES-JMM und PowerACE mehr als ELTRAMOD
- Kleinere Unterschiede in der Erzeugungsstruktur, im Speichereinsatz und in den Strompreisen
- Ursachen für Ergebnisunterschiede (u.a.):
 - Mathematischer Ansatz (lineare Optimierung vs. agenten-basierte Simulation)
 - Myopische / perfekte Voraussicht (1 Jahr) vs. rollierende Planung



Systemsichtvergleich

Versorgungssicherheitsindikatoren DE 2030

Ladevolumen

- Häufiger auftretende kritische Versorgungssituationen ohne Lastglättung der Stromanwendungen **EMob und WP** (Abb. links)
- Residuallastglättung erfolgt durch optimale Lastverschiebung von Elektromobilität (Ladestrategien) und Wärmepumpen mittels Wärmespeichern
- **EMob und WP vermindern kritische Versorgungssituationen** (Abb. rechts)
- Reduktion von kritischen Versorgungssituationen mit Importabhängigkeit (Stunden mit PID* \downarrow und PIDmax \downarrow)
- Reduktion nicht-gewährleisteter, aber benötigter Erzeugungsmengen (EENS $*\downarrow$)
- Weiteres Potenzial zur Reduktion kritischer Versorgungssituationen durch Einsatz von Pumpspeichern und anderen Flexibilitätsoptionen

*PID ... Power Import Dependency, *EENS ... Expected Energy Not Served

Iterationsschrittvergleich

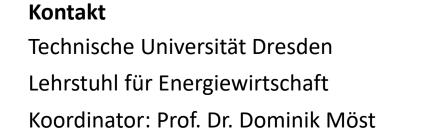
Ergebniskonvergenz der Mehrfachiterationen

- Nach 3 Iterationsschleifen erscheinen Ergebnisse robust
- Geringe stdl. Strompreisänderung von IT2 vs. IT3 (MAE 0.37 EUR/MWh, RMSE 1.53 EUR/MWh)
- Gründe für schnelle Ergebniskonvergenz
 - Weitergabe weniger Austauschparameter
 - Verwendung von einem durchschnittlichen Endkunden-Strompreis pro Jahr in MG1 und MG2, dadurch wenige Änderungen
 - Großhandelsstrompreis (MG3) hat einen geringen Hebel (ca. 23% vom Endkundenstrompreis), daher zeigen sich EMob- und WP-Diffusion wenig strompreissensitiv in den Iterationsschritten
- Zukünftig Preisanreize (z.B. stdl. Volatilität der Strompreise) an Endkunden weitergegeben, um Investitionsanreize für Flexibilitätsoptionen zu schaffen

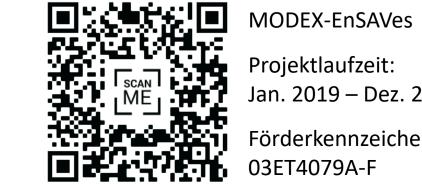
Lessons Learned

Hoher Zeit- und Abstimmungsaufwand für Harmonisierung der Eingangsdaten

- Reduzierung von Modellkomplexität zur Identifikation relevanter Modellunterschiede
- Hohe Transparenz in der Modellierung sollte Standard sein (Open Source Modellierungscode und Eingangsdaten)
- Zentrale Datenverwaltung und -konfiguration von entscheidender Bedeutung (Data Warehouse für Upload und Download von Eingangs-/ Ergebnisdaten insbes. bei Modellkopplungen)
- Ziel von Modellvergleichen ist Herausstellung von Stärken und Eigenschaften der einzelnen Modelle
- Identifikation von Verbesserungsmöglichkeiten eigener Modelle



hlussfolgeru



E-Mail: dominik.moest@tu-dresden.de

Jan. 2019 – Dez. 2021 Förderkennzeichen:

Projektlaufzeit:
Jan 2010